

# Influences of Temperature on Permeability Changes of Flow-Paths Altered by Highly Alkaline Ca-rich Groundwater

## **INTRODUCTION**

Fractures in host rock around the geological repository are considered as main flow-paths for the migration of radionuclides. Such fractures would be altered by the alkaline components (Ca, Na, K) leaching from cementitious materials.

 $\rightarrow$  Dissolution of silicate minerals & Deposition of secondary minerals ✓ Calcium-silicate-hydrate (CSH-gel) may clog the flow-paths. Temperature changes greatly affect the chemical reactions.

<u>Authors' previous study (Kurata et al., 2015)></u>

The formation of CSH-gel and the clogging of micro flow-path under the condition of Ca-rich and high pH were showed by flow experiments (298 K). <u>Objective</u>

This study examined the influence of temperature on the clogging effect (the permeability changes) in micro flow-paths with the deposition of CSH-gel.



Taiji Chida, Daiki Kurata, Yuichi Niibori and Hitoshi Mimura Dept. of Quantum Science & Energy Engineering, Graduate School of Engineering, Tohoku University, Japan

> deposition 166 µm  $0\,\mu m$

Before

Surface of granite chip observed by digital micro scope (Kurata, 2015)

The permeability of overall micro flow-cell was estimated by measuring the pressure difference between inlet and outlet. •Flow rate: 2.0 ml/h. Solution: 8.5 mM Ca(OH)<sub>2</sub> adjusted to  $N_2$  gas pH 12.2 – 12.5 with NaOH. •Temperature: 278, 296, 313 K. (submerging the micro flow-cell into a thermostat water bath) •Sampling port was filled with  $N_2$  gas. Eluted Ca and Si were measured by ICP-ASE.

### <Evaluation of Deposition rate of CSH-gel>

Deposition rate constant can be evaluated from the time dependency of the permeability change.

| <b>,</b>                             |                                                                                                       |
|--------------------------------------|-------------------------------------------------------------------------------------------------------|
| $p_0 - b) = \int_0^t k_R c dt$       | $k_{\rm R}$ : deposition rate constant (m/s)<br>$\rho_{\rm M}$ : density of CSH (mol/m <sup>3</sup> ) |
| o(h-h)                               | <i>p</i> : pressure (Pa)                                                                              |
| $=\frac{\rho_s(v_0 - v)}{v_0 - v_0}$ | c: Ca concentration (mol/dm <sup>3</sup> )                                                            |
| ct                                   | (c is constant.)                                                                                      |
| $- k_{\rm r}c$                       | $b_0$ : initial aperture of flow-path (m)                                                             |
| $K = 1 - \frac{m_R c}{r} t$          | b: aperture of flow-path (m)                                                                          |
| $ ho_s b_0$                          | $k_0$ : initial permeability (m <sup>2</sup> )                                                        |
|                                      | $K = k/k_{o}$                                                                                         |





**RESULTS and DISCUSSION** 

## **CONCLUSIONS**

Main results in this study are as follow:

Permeability through micro flow-cell became lower with the increase in temperature. ✓ CSH-gel formation accelerated with the increase in the supply rate of silicic acid. ✓ Deposition rate constants became larger with the increase in temperature. (although the suspension of CSH-gel might flow out of the micro flow system) The clogging with CSH-gel in fracture of granite would be accelerated under a relatively higher temperature condition such as in the geological repository.

WM2015 Conference, March 15-19, 2015, Phoenix, Arizona, USA. E-mail: taiji.chida@qse.tohoku.ac.jp