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ABSTRACT 

Exponential population growth is a growing challenge that will increase the global demand for 
both food and bioenergy, increase the pressure on land and water resources and change its 
availability, and also influence the pattern of biomass production. The objective of this study is 
to evaluate and compare the efficiency of bio-sorbents obtained from different parent materials, 
zeolite, and activated carbon as an infiltration media of contaminated surface-groundwater by 
assessing reductions of chemical oxygen demand, nitrogen and phosphorus compounds, as well 
as sum selected trace elements. Furthermore, the current research will investigate how long the 
cleaning capacity of the selected bio-sorbents lasts and how the performance of the filter changes 
under an increased load of contaminants. Bio-sorbents characteristics, its applications as a green 
environmental sorbents for the contaminated water and soil, and its importance for the soil 
sustainable use are also reviewed.        

INTRODUCTION 

Water consumption has increased and is expected to continue rising as the population increases 
and the availability of water becomes increasingly limited with a changing climate [1, 2]. Not 
only does quantity but also the quality of surface-groundwater affects the long-term sustainable 
use of water resources, especially in intense agricultural regions, where the urban and rural 
population, irrigation and industries have consumed a huge portion of major water supplies [3]. 
The intense applications of fertilizers in agricultural regions and the other point source 
discharges have resulted in severe surface-groundwater and soil contamination, particularly 
nutrients (nitrogen and phosphorus) and heavy metals [e.g., 4, 5, 6, 7, 8]. 

Nutrients (especially nitrogen and phosphorus) is an essential element of aquatic ecosystem, but 
excessive levels can reduce the quality of water for human uses and lead to many environmental 
and health problems. For example, the deleterious effects of excessive environmental N include 
the following: (1) an oxygen deficient condition referred to as “blue baby syndrome” in infants 
under the age of six months [9]; (2) the risk of non-Hodgkin's lymphoma in adults and reduced 
stomach acidity [10, 11]; and (3) acidification of soils and water resources [12].  

High phosphate concentrations can cause kidney faller and damage the liver, and osteoporosis 
[12]. The increasing phosphor concentrations in surface waters caused eutrophication 
phenomenon, which increases the growth of phosphate-dependent organisms, such as algae and 
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duckweed, which, in turn, consume great amounts of oxygen and prevent sunlight from entering 
the water, All these changes in the water medium, make the water fairly unliveable for other 
organisms [12]. 

The fate and transport of nitrogen and phosphorus in water have been very well studied over the 
world [4, 5, 13]. A number of studies conducted over the last three decades in Midwest - United 
States have indicated that nitrogen/phosphorus leaching is occurred to the surface water and 
shallow groundwater aquifers [14, 15, 16]. All the previous studies were focused on the 
monitoring and management methods, and despite all the efforts to establish an effective 
management system that can protect water quality in the Midwest - United States, more than 
20% of the surface-groundwater samples in the Midwest have nitrogen/phosphorus 
concentrations greater than the EPA maximum contamination level (MCL) [7], which is 10 
milligrams per liter (mg/L or part per million [ppm]). 

Heavy metals exist extensively in the natural and human-altered environments. They are 
careering a risk to public health and environment because of their toxic, carcinogenic, and non-
biodegradable nature. They are mainly introduced into the environment from point sources (e.g., 
discharges from mining, metal plating, battery, and paper industries). Lead, copper, cadmium, 
and nickel are among the most toxic and carcinogenic heavy metals that could cause serious 
environmental and health problems. The United States Environmental Protection Agency 
(USEPA) has established maximum contaminant level targets for these heavy metals in natural 
waters.  

Many methods have been created to address the EPA rules and regulations which required 
removal of nutrients and heavy metal compounds from water. For example, precipitation, ion 
exchange, electro-coagulation, membrane filtration, and packed-bed filtration are some of the 
traditional water treatment technologies that have been found to be effective in reducing 
nutrients and heavy metal concentrations [17, 18, 19]. However, most of these technologies have 
been found to be associated with high operation cost and/or sludge disposal problems [20]. 
Therefore, the need has increased for developing an alternative and low-cost technology for 
nutrients and heavy metal removal from water. Bio-sorbents have been suggested to be a 
potential candidate to satisfy these needs [21].  

Bio-sorbents have recently been used as a mechanical support to disperse and stabilize 
engineered nanoparticles to assist their environmental applications [22, 23, 24, 25]. However, 
these applications have been conducted mainly on small-scale models that are currently limited 
to specific bio-sorbent types and site locations (e.g., it is limited for aqueous solutions or batch 
processes) [26, 27]; also only limited information is available on bio-sorbent and metal 
interactions as well as the associated underlying mechanisms [28]. On the other hand, some kind 
of bio-sorbents can release some toxic pollutants to the environment, which have negative effects 
on the soil and surface-groundwater systems [29]. 
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The overall goal of this research is to study the use of bio-sorbents as a replacement/ alternative 
for activated carbon and similar materials to serve as a filter material for surface-groundwater 
purification. The specific objectives are (i) to evaluate the chemical oxygen demand (COD), total 
nitrogen (Tot-N) and total phosphorus (Tot-P) reductions in surface-groundwater infiltrated 
filters made of bio-sorbents and activated carbon and (ii) to compare the surface-groundwater 
purification efficiency of bio-sorbents and activated carbon. 

BIO-SORBEN EXAMPLES AND BACKGROUND  

The Amazonia dark earth “Terra Preta de Indio” that formed as a result of native settlement in 
Brazil [30, 31] represents the first evidence of biochar use in history as a bio-sorbent. Biochar is 
the carbon rich, fine-grained, porous product obtained as a by-product of biomass pyrolysis, 
thermal/hydrothermal decomposition of plant/organic wastes-derived materials under limited 
supply of oxygen at relatively low temperatures (< 1000 degrees Celsius [ºC]) to produce 
combustible gases [32, 33, 34, 35, 36, 37, 38].  

The variations in the production process and the intended use are distinguished biochar types 
from charcoal and similar materials. Biochar can be easily obtained from many kinds of plant 
and waste biomass like agricultural crop residues, forestry residues, animal waste (manure), 
woody materials, food processing waste, paper mill waste, municipal solid waste, sewage sludge, 
and anaerobically digested/ undigested biomass residue materials (or the remains of biofuel 
production) [28, 32, 35, 39, 40, 41, 42, 43, 44, 45, 46, 41]. However, biochar may contains 
considerable amounts of soluble base cations (toxic heavy metals) - especially the biochar that 
developed from sewage sludge and municipal solid waste – that can be released rapidly into soil 
[35, 47, 48, 49] therefore biochar must be carefully handled before long-term application to soils. 

Biochar is produced at relatively low-cost compared to activated carbon [35], because it is 
generally obtained at lower temperature (less energy) and without further activation processing 
[50, 51], and it can be used for carbon sequestration in agricultural applications and 
environmental management; whereas charcoal is a source of charred organic matter for 
producing fuel and energy. 

BIOCHAR CHARACTERISTICS  

 Many authors have reported some of biochar general and specific characteristics and properties. 
The quality of biochar and its effective potential value to the environmental applications are 
greatly affected by the nature of the feedstock (parent material) [38, 52], and the variations in the 
pyrolysis process, principally temperature and furnace residence time [28]. Because biochar can 
be made of various plant/waste biomass sources under different processing conditions, it is 
therefore very important to characterize their physicochemical properties before use [53]. 

Biochar has a neutral to alkaline pH. The acidic neutralizing capacity of biochar and its effects 
on the activity of soil bacteria (liming effect of biochar) may vary based upon the mineral 
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deposits and oxygen-organic functional groups on biochar surfaces formed during pyrolysis 
processing or produced from parent feedstock [46, 54, 55, 56]. For example, Chan et al. (2007) 
[57] has reported the acidic media of biochar, and Zweiten et al. (2010) [58] has reported that 
biochar derived from paper mill waste pyrolyzed at 550 °C had a liming value around 30% that 
of calcium  carbonate (CaCO3). 

Biochar in some cases possess large surface area, high degree of porosity [28], good ion 
exchange capacity, and a range in chemical compositions [24]. Higher pyrolysis temperature 
often results in an increase of surface area (e.g., Day et al. (2011) [59] reported that increasing 
the pyrolysis temperature from 400 to 900 ºC caused an increase in biochar surface area from 
120 to 460 m2/g), ash content, and pH, while P, calcium (Ca), and magnesium (Mg) increased as 
temperature increased [55].  

BIOCHAR AND ENERGY PRODUCTION  

Research on the environmental use of biochar in the energy applications is almost limited to the 
production of bioenergy during the fast and slow pyrolysis processes, through converting waste 
biomass to biochar [60]. Lower pyrolysis temperature (slow pyrolysis) often results in an 
increase of biochar yield and decrease of carbonized fraction of biochar (Table 1), i.e., biochar 
carbon content is inversely related to biochar yield [28, 61]. 

Table 1 Pyrolysis processes and biochar products distribution*  

Process Temperature 
(°C) 

Residence time 
(S) 

Biochar carbon 
(bio-oil) (%) 

Biochar 
yield (%) 

Synthetic 
gas (syngas) 

(%) 
Fast 
pyrolysis 

300-1000 Short (< 2) 75 12 13 

Intermediate 
pyrolysis 

~500 Moderate (10-20) 50 25 25 

Slow 
pyrolysis 

100-1000 Long (300-1800) 30 35 35 

Gasification >800 Moderate (10–20) 5 10 85 
Table adopted from: [52, 60, 61, 107, 108] 

Chen (2011) [28] showed that increasing the pyrolysis temperature from 300 to 800 ºC caused an 
increase in biochar carbon content by about 37%, whereas the biochar yield has decreased by 
41%. However, some other authors [55] have reported that biochar carbon contents significantly 
decreased from 36.8% to 1.67% with increasing the pyrolysis temperature from 100 to 500 ºC. It 
was noticed that a maximum bioenergy output of 8.7 millijoules per kilogram (MJ/kg) of 
biomass could be obtained, with an intermediate yield of 35% biochar [40]. On the other hand, 
Yuan (2013) [62] used sewage sludge biochar as an efficient catalyst for oxygen reduction 
reaction in a microbial fuel cell (MFC), and their resulted indicated that sewage sludge biochar 
can be a potential alternative to platinum (Pt) in MFCs. However, industrial scale production of 
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biochar and/or bioenergy from biomass is still controversial, with research currently ongoing 
within the scientific and technological communities focusing on the most effective method of 
producing it on a large scale.  

BIOCHAR FOR SOIL IMPROVEMENT  

Because of its potential as a long-term sink for carbon, biochar has been distinguished as a 
considerable material in soil amendment applications to improve the physicochemical and 
biological properties of soils such as: 

1. Improve crop production, the alkaline pH of biochar encourages a liming effect on acidic 
soils, thereby potential increase in plant productivity, e.g., Glaser et al. (2002) [63] have 
documented the positive implications of biochar in seed germination, plant growth, and 
crop yields. However, results of few studies on biochar effects on crop production 
showed no significant effects on crop productivity [64]. 

2. Soil fertility by applying biochar together with organic or inorganic fertilizers can 
enhance the retention of fertilizers (nutrient retention) and then enhance crop yields [65], 
e.g., Sohi et al. (2009) [52] has documented a decrease of nutrient leaching due to biochar 
applications. On the contrary, Cowie et al. (2012) [66] have reported that biochar 
obtained from kind of agricultural crops or certain type of forests may lead to a decline in 
soil fertility and cause an increase in soil erosion. 

3. Soil-water holding capacity, e.g., Glaser et al. (2002) [63] has reported an increase in the 
soil-water retention capacity by 18% with biochar existence. 

4. Encouraging the host of beneficial microorganism and increased its population [36, 44, 
67, 68]. 

5. Soil amended with biochar has showed null to positive impacts on earthworm population 
[69], especially wet biochar that could help mitigate avoidance of earthworms by 
preventing desiccation [70]. However, negative effects of biochar on earthworm 
population are suggested to be related to rise in soil pH by biochar derived from sludge, 
manures or crop residue [69].  

6. Serve as a recalcitrant carbon stock, and modify the soil enzymatic activities, which 
influences the biogeochemical processes of the soil microbial communities [67, 71], 
which fasten the decomposition of soil native carbon (biochar positive priming effect). 

7. Applying of biochar to soil may influence its chemical properties such as changes in pH, 
electrical conductivity, cation exchange capacity and soil buffering, and metal sorption 
efficiency [72, 73, 74, 75]. Biochar could enhance the chemical hydrolysis of the soil by 
increasing its pH, which enhances the biochar positive priming effect [76, 77, 78]. 

8. It has also been suggested that biochar can even enhance crop resistance to disease [38]. 
9. Some other researchers, on the contrary, have reported that biochar could increase the 

adsorption of dissolved organic carbon [79, 80], that decreasing its decomposition rate 
(enhance biochar negative priming effect), which has attributed to the toxicity of biochar 
that resulting in a decreasing in microbial activity [80].   
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BIOCHAR  AND SOIL  REMEDIATION 

It has been noticed that biochar made from a variety of sources had strong sorption ability to 
different types of organic contaminants and pesticides (Table 2) [81, 82, 83]. The biochar 
sorption ability has been shown to exceed that of the natural soil organic matter by a factor of 
10–100 in some cases [84].  

Cui et al. (30) [85] studied the sorption and desorption of phosphorus on ferrihydrite (Fe-oxide) 
in the absence or presence of biochar in soils. Results showed that the sorption of phosphorus on 
Fe-oxide decreased in the presence of biochar and desorption of adsorbed phosphorus on Fe-
oxide was enhanced by combination with biochar. The enhanced phosphorus bioavailability in 
biochar amended soil may due to the changes of soil environment for microorganisms.  

BIOCHAR  AND CLIMATE  CHANGE  MITIGATION   

Biochar is being considered as a potentially significant material of storing carbon (sequestering 
carbon in soil) for long periods [86] to reduce the emissions of greenhouse gasses from soils and 
sequestering atmospheric CO2 in order to mitigate global warming [32, 33, 39, 51, 86, 87, 88]. 
Singh et al. (2012) [89] estimated the mean residence time of carbon in biochar between 90 and 
1600 years depending on the labile and intermediate stable carbon components. 

Conversely in an attempt to clarifying the key mechanisms in which biochar may act in 
mitigating emissions of nitrous oxide (N2O), Cayuela (2013) [46] investigated the published 
literature in this matter from 2007 to 2013, which are 30 studies with 261 experimental 
treatments. They concluded that, (1) biochar reduced soil N2O emissions by 54% in laboratory 
and field studies; e.g., Rondon et al.(2005) [90] found that N2O emissions were decreased by up 
to 50% for soybean and by up to 80% for grass growing in a low-fertility oxisol from the 
Colombian savanna, (2) the biochar parent materials, pyrolysis processes and carbon/nitrogen 
(C/N) ratio were shown to be key factors influencing emissions of N2O while a direct correlation 
was found between the biochar application rate and N2O emission reductions, and (3) 
interactions between soil matrix and the chemical form of N-fertilizer applied with biochar were 
also found to have a major influence on soil N2O emissions.  
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Table 2 Biochar utilization for organic/inorganic contaminants remediation in soil 

Contaminant Biochar type Effect References 

Agro chemicals 
Atrazine 

  
Dairy manure (450 °C) 

  
Sorption 

  
[54] 

Chloropyrifos and carbofuran Woodchips (450 and 850 °C) Adsorption due to high surface area and nano-porosity [76] 
Pentachlorophenol Bamboo (600 °C) Reduced leaching due to diffusion and partition [112] 
Pentachlorophenol Rice straw Adsorption due to high surface area and microporosity [82] 
Simazine Hardwood (450 and 600 °C) Sorption due to abundance of micropores [113] 

Antibiotics 
Tylosin 

  
Pulpgrade hardwood and softwood chips 
(850 and 900  °C) 

  
Sorption 

  
[114] 

Other hydrocarbons 
Phenanthrene 

  
Pine wood (350 and 700 °C) 

  
Entrapment in micro- or meso-pores 

  
[115] 

Polycyclic aromatic hydrocarbons (PAHs) Hard wood Sorption and biodegradation [73] 
Polycyclic aromatic hydrocarbons (PAHs) Sewage sludge (500 °C) Partitioning [116] 

Heavy metals and trace elements  
Arsenic 

  
Hard wood (400 °C) 

  
Mobilization due to enhanced pH and DOC 

  
[117] 

Arsenic and copper Hard wood Mobilization due to enhanced pH and DOC [73] 
Arsenic, cadmium, chromium, cobalt, copper, 
nickel, lead, and zinc 

Sewage sludge (500–550  °C) Immobilization of arsenic, chromium, cobalt, nickel and lead due to 
rise in soil pH; mobilization of copper, zinc and cadmium due to 
high available concentrations in biochar 

[116]  

Cadmium and zinc Hard wood Immobilization due to enhanced pH [73] 

Cadmium, copper and lead Chicken manure and green waste (550  °C) Immobilization due to partitioning of metals from the exchangeable 
phase to less bioavailable organic-bound fraction 

[118] 

Copper Broiler litter (700  °C) Cation exchange; electrostatic interaction; sorption on mineral ash 
contents; complexation by surface functional groups 

[72, 104] 

Copper and lead Oak wood Complexation with phosphorous and organic matter [119] 

Lead Dairy manure (450  °C) Immobilization by hydroxypyromorphite formation [55] 

Lead Oak wood (400 °C) Immobilization by rise in soil pH and adsorption onto biochar [107] 
Lead Rice straw Non-electrostatic adsorption [120] 

Lead, copper, zinc and antimony Broiler litter (350 and 600  °C) Stabilization of Pb and Cu; desorption of Sb [72] 
Nickel, copper, lead and cadmium Cottonseed hulls (200–800  °C) Surface functional groups of biochars controlled metal sequestration [104] 

    



WM2015 Conference, March 15 – 19, 2015, Phoenix, Arizona, USA 

8 
 

Some other authors have explained the mechanism by which biochar is reducing the soil N2O 
emissions as that biochar is affecting soil physical properties, either by reducing soil compaction 
and bulk density [91] or by sorbing an excess of soil moisture [92, 93], which leads to an 
increase in soil porosity and aeration which is a major factor governing N2O generation and 
diffusion [94] because it regulates the oxygen availability for microorganisms, and then affecting 
the activity/ratio of nitrifiers and denitrifiers [46, 95], which changes the microbial abundance 
and community composition [67]. 

 Shang (2013) [96] studied the potential of biochar derived from camphor, bamboo, and rice hull 
to adsorb H2S at various temperatures. They concluded that biochar with particle size ranging 
from 0.3 to 0.4 mm (rice hull) possesses a maximum H2S sorption capacity at a pyrolysis 
temperature of 400 °C. 

While there is a strong evidence that, in many cases, emissions of carbon dioxide (CO2), N2O 
and hydrogen sulfide (H2S) are reduced, the potential application of biochar with regards to 
reducing the emissions of N2O and other greenhouse gases such as methane (CH4) and H2S, and 
the hypothetical mechanisms by which biochar influences such processes are still less recognized 
and remains a difficult challenge that requires an intensive research [46, 97, 98, 99].  

BIOCHAR  AND WATER  TREATMENT  APPLICATIONS   

Several authors have been studied biochar that converted from agricultural crop residues, 
forestry residues, animal waste, woody materials, and anaerobically digested/ undigested 
biomass residue materials (or the remains of biofuel production), as a low-cost sorbent material 
in water treatment applications (Table 3) and evaluated its capacity in removing various 
contaminations from aqueous solutions including heavy metals (e.g., lead, copper, nickel, and 
cadmium), nutrients (e.g., phosphate and nitrate), and organic and inorganic compounds, because 
of its carbon matrix structure that provides it with a medium-to high surface area, and for its 
abundance of polar functional groups, such as carboxylic, hydroxyl and amino-groups which are 
favorable for heavy metals removal. 

Removal of heavy metal from water media is influenced by many factors, such as solution 
concentration and pH, contact time, carbon dosage, and sorbent surface modification procedure 
[100]. The efficiency of biochar in metal sorption can be enhanced by: (1) iron-impregnation 
[101], (2) oxidizing the surface of the carbon in order to increase the number of surface active 
sites, mainly given by oxygenated active groups such as carboxylic and phenolic moieties [102, 
103, 104, 100]; (3) composting [105], and (4) chemical activation using hydroxides [106]. 

The investigations on the interaction of metal ions with the carbon surface active groups are 
fundamental for the development of wastewater treatment technologies based on 
sorption/desorption processes. However, the mechanism of metal ion adsorption is not yet 
adequately understood [103]. 
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Table 3 Biochar utilization for organic/inorganic contaminants remediation in water 

Contaminant Biochar type Effect Reference 
    Agro chemicals       

    Atrazine Dairy manure (450 °C) Partitioning into organic C/sorption [55] 
Atrazine and simazine Green waste (450 °C) Adsorption and partition [121] 
Chlorpyrifos and fipronil Cotton straw (450 and 850 °C) Adsorption due to high surface area and microporosity [122] 

Deisopropylatrazine Broiler litter (350 and 700 °C) Sorption due to high surface area and aromaticity; sorption on 
noncarbonized fraction 

[104] 

Pyrimethanil Red gum woodchips (450 and 850 °C) Adsorption due to high surface area and microporosity [76] 

Norflurazon and fluridone Grass and wood (200–600°C Sorption on amorphous C phase [123] 

 

Antibiotics 
      

Sulfamethazine Hardwood (600 °C) Adsorption due to p–p electron donor–acceptor interaction; 
negative charge assisted H-bonding 

[124] 

Sulphamethoxazole Bamboo (450 and 600 °C) Sorption [22] 

 Pepperwood (450 and 600 °C)   

 Sugarcane bagasse (450 and 600 °C)   

 Hickory wood (450 and 600 °C)   

Tetracycline Rice husk (450–500 °C) Formation of p–p interactions between ring structure of 
tetracycline molecule and graphite-like sheets of biochars 

[125] 

 

Other hydrocarbons 
      

Brilliant blue and 
rhodanine dyes 

Rice and wheat straw Electrostatic attraction/repulsion and intermolecular 
hydrogen bonding 

[126] 

Catechol and humic acid Hard wood, softwood and grass (250, 400 
and 650  C) 

Adsorption due to presence of nano-pores [127] 

m-Dinitrobenzene Pine needles (100–700 °C) Transitional adsorption and partition [28] 

Methyl violet Crop residue (350 °C) Electrostatic attraction; interaction between dye and 
carboxylate and phenolic hydroxyl groups; surface 
precipitation 

[112] 

Naphthalene Pine needles (100–700 °C) Transitional adsorption and partition [28] 

Naphthalene Orange peel (250, 400 and 700 °C) Adsorption and partition [28] 

Naphthalene and 1- 
naphthol 

Orange peel (150–700 °C) Adsorption and partition [28] 

Nitrobenzene Pine needles (100–700 °C) Transitional adsorption and partition [28] 

Phenanthrene Soybean stalk (300–700 °C) Partitioning [128] 

p-Nitrotoluene Orange peel (250, 400 and 700 °C) Adsorption and partition [28] 

Pyrene Corn stover (600 °C) Adsorption due to nano-porosity [129] 

Pyrene Saw dust (400 and 700 °C) Sorption [27] 

Trichloroethylene Soybean stover (300 and 700 °C) Sorption [107] 

 Peanut shell (300 and 700 °C)   

 

Heavy metals and trace elements  
  

Chromium Oak wood (400–450  °C) Sorption [61] 

 Oak bark (400–450  °C)   

Chromium Sugar beat tailing (300  °C) Electrostatic attraction; reduction of Cr(VI) to Cr(III); 
complexation 

[130] 

Copper Crop straw (400 °C) Adsorption due to surface complexation [131] 
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Contaminant Biochar type Effect References 
Copper Pecan shell (800 °C) Sorption on humic acid at pH 6; precipitation of azurite or 

tenorite at pH 7, 8 and 9 
[103] 

Copper and zinc Hardwood (450 °C) Endothermic adsorption [28] 

 Corn straw (600 °C)   

Copper, cadmium, nickel 
and zinc 

Broiler litter (500  °C) Adsorption onto inorganic fraction of biochar [132] 

 Alfalfa stems (500 °C)   
 Switch grass (500  °C)   
 Corn cob (500 °C)   
 Corn stover (500 °C)   
 Guayule bagasse (500  °C)   
  Guayule shrubs (500  °C)    
 Soybean straw (500  °C)   
Lead Dairy manure (200 °C) Precipitation with phosphate [55] 
Lead Sewage sludge (550  °C) Adsorption due to cation release, functional groups 

complexation, surface precipitation 
[49] 

Mercury Soybean stalk (300–700  °C) Precipitation, complexation and reduction [128] 
    

 

BIOCHAR  ECONOMIC  VALUE 

The growing price of waste disposal is likely to make the production and application of biochar 
for electricity and waste management economically viable. The cost of biochar production from 
agricultural by-products (agricultural residues, animal waste, and woody materials) is mainly 
associated with the processing (machinery and heating), which is only about $4 per gigajoule 
[43]. Biochar economic value is influenced by energy supplies and demand, the supply and 
demand for low emissions technologies, the availability of alternative biochar technologies and 
global policy responses to climate change [87]. 

METHODS   

A plug-flow rector (PFR) will be designed in order to evaluate the efficiency of some NanoBio-
sorbent materials in surface-groundwater treatment, and compare its performance in sorption of 
nitrogen and phosphorus with the activated carbon.  

EXPERIMENTAL SETUP 

1. Material preparation and packing: sieve analysis and particle size distribution of the 
NanoBio-Sorbents and activated carbon will be determined.  

2. Fill four of the (4.5 cm diameter x 60 cm long) PFR, two with NanoBio-Sorbents and the 
other two with the activated carbon (Figure 1). PFRs will be filled up to 2.5 cm with 
bottom silica sand and/or zeolite, then 50 cm of the well mixed filter material (packed 
them as densely as possible). A layer of 2.5 cm top silica sand and/or zeolite will be 
added and finally the whole PFR will be packed into aluminum foil in order to prevent 
light penetration. Throughout the PFR packing process, the individual weights of the 
different fractions will be recorded (column, gravel, filter material) in order to calculate 
bulk density, particle density and total porosity in a later step. NanoBio-Sorbent 
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3. Bulk density, particle density, and total porosity of each PFR will be determined, using 
standard procedures of soil physics. Moreover, the tracer residence time will be 
determined using electrical conductivity and a sodium chloride tracer in the outflow. 

4. Surface-groundwater samples will be distributed through the PFR (using low rate flow 
meters) by a rate around 5ml/min. 

5. The effluent water from the activated carbon and NanoBio-sorbents PFR will be sampled 
continually, and it will be tested for pH, electrical conductivity (EC), alkalinity, chemical 
oxygen demand (COD), biological oxygen demand (BOD), methylene blue active 
substances (MBAS) as indicator for anionic surfactants, nitrate (NO3-N), ammonium 
(NH4-N), total nitrogen (Tot-N), phosphate (PO4-P) total phosphorous (Tot-P), in 
addition to the major cations and anions and common trace elements using ion 
chromatography (ICs), and integrated coupled plasma mass spectrophotometer (ICP-MS).  
 

 

Figure 1.  Experimental plan shows the NanoBio-Sorbents and activated carbon PFR design 
construction and dimensions, as well as the feeding process.  
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DETERMINATION OF THE PHYSICAL PARAMETERS  

Equations [1, 2, 3, 4, and 5] will be used for the determination of, respectively, water contents, 
particle density, water density, bulk density, and total porosity of the materials in the PFR. 
Standard procedures of soil physics were followed can be found in Hillel (1982) [109]. For the 
determination of particle density and gravimetric water content, samples were taken from the 
excess of the filter materials that had been mixed at the ratio 2:3. 

The gravimetric water content (w) of the air dry filter materials was determined on dry base by 
applying the following formula: 

� = �� ��⁄                                  (Eq. 1) 

Where: 
W: gravimetric water content (g/g) 
Mw: mass of water (g) 
Ms: mass of solids (g) 
 

The air dry materials will be dried for 24 hours in a furnace at 105 °C. The mass of water will be 
calculated by subtracting the weight of the oven dry material from the weight of the air dry 
material. The particle density of solids (ρs) is determined by applying the following formula: 

ρs = �� ��⁄                                  (Eq. 2) 

Where: 
ρs: Particle density (g/cm3) 
Ms: mass of solids (g) 
Vs: volume of solids (cm3) 
 
Water density at a certain temperature is determined using two volumetric flasks filled up to a 
third with the oven dried materials, one with bio-sorbent, and the other one with granular 
activated carbon. The flasks then will be filled with deionized water that already had settled for 
three days until up to the half. Then the flasks will be placed for boiling on a hot plate for around 
10 minutes, until no more air bubbles came up. The cooled and covered flasks remained standing 
in the lab for 24 hours and then they will be filled up with deionized water to the volume line. 
The weight of the flasks should be recorded for all steps and at the end also the temperature of 
the water in the flask must be recorded. According to Tanaka et al. (2011) [110], the following 
formula can be used to get the water density.   

ρw (t) = a5. [1 - 
	
��
��.	
����

��.	
����
]                              (Eq. 3) 

Where: 
ρw		t�: Density of clean water, free from air (Kg/m3), having the isotopic composition of the 
Standard Mean Ocean Water (SMOW) at p0=101325 Pa. 
t: temperature (°C) 



WM2015 Conference, March 15 – 19, 2015, Phoenix, Arizona, USA 

13 
 

a1: coefficient (-3.983035) (°C) 
a2: coefficient (301.797) (°C) 
a3: coefficient (522528.9) (°C) 
a4: coefficient (69.34881) (°C) 
a5: coefficient (999.974950) (Kg/m3) 

 

The density of the water at the measured temperature can be compared with a water density table 
for pure water [111]. In order to obtain the volume of water, multiply the water density by the 
mass of water. By abstracting the volume of water from the total volume, the volume of solids is 
calculated. The mass of solids is then divided by the volume of solids to obtain particle density. 
The bulk density (ρb) can be determined by applying the following formula: 

ρs = �� ��⁄ = 	�� 	�� + �� + ���⁄                                  (Eq. 4) 

 
Where: 
ρb: bulk density (g/cm3) 
Ms: mass of solids (g) 
Vs: volume of solids (cm3) 
Vt: total volume of the representative soil body (here: carbon) (cm3)  
Va: volume of air (cm3) 
Vw: volume of water (cm3) 
 
The total volume (Vt) is the part of the PFR that is filled with the filter material (excluding top 
and bottom silica sand). The PFR is filled with 50 cm of filter material and had a diameter of 4.5 
cm. The mass of solids is determined by subtracting the mass of water from the air dry filter 
material in the PFR. The mass of water is calculated by multiplying the air dry weight of the 
filter material by the gravimetric water content. The total porosity is calculated with the formula: 
 
 

� = 1 − �� ��⁄                           (Eq. 5) 

Where: 
f: porosity (cm3/cm3) 
ρb: bulk density (g/cm3) 
ρs: particle density (g/cm3) 
 
The efficiency in reduction of the measured substances was calculated with the following 
formula: 
 

� = 	
� !"�#$


� !
          (Eq. 7) 

E: Efficiency 
Cin: Influent concentration (mg/L) 
Cout: Effluent concentration (mg/L) 
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CONCLUSIONS 

Researchers have documented the effects of NanoBio-Sorbents amendment to soil on the 
vegetation growth for quite some time, but its development for environmental management on a 
global scale is quite recent. NanoBio-Sorbents might be a costly effective material to be used for 
soil improvement, waste management, climate change mitigation and energy production, 
alternative to replace the industrial activated carbon and similar materials, which has long been 
used for water treatment. NanoBio-Sorbents applications have been conducted on water 
treatment mainly on small-scale models that are currently limited to specific NanoBio-Sorbents 
types and site locations.  
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