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ABSTRACT 

Тhe chromium plume at Los Alamos National Laboratory is a complex contaminant-remediation site with 
spatial extent of several square kilometers. It is located in a regional aquifer near water-supply wells and 
other points of compliance. The plume originated on the ground surface and the contaminant migrated 
along complex pathways through a thick vadose zone (~300m) that incudes intermediate lateral zones of 
saturation and vertical preferential flowpaths. Here we discuss the development of a modeling 
computational framework for the site. The framework work incorporates data assimilation and 
model-results analysis tools including decision support techniques. The decision tools are demonstrated 
using synthetic problems consistent with the interpretation of existing site data and site modeling results. 
The analyses aim at robust and efficient environmental management of the plume and explore a series of 
alternative remedial options. The remedial options include natural attenuation (NA), enhanced attenuation 
(EA), contaminant source removal (in the vadose zone), contaminant extraction (in the regional aquifer at 
the plume centroid and peripheries), biogeochemical remediation (injection of fluids stimulating growth of 
organisms in the aquifer impacting chromium concentrations), as wells as hydraulic controls on the 
groundwater flow and transport in the vadose zone and the regional aquifer. The applied model analyses 
and decision-support algorithms are implemented in code MADS (Model Analyses for Decision Support; 
http://mads.lanl.gov). MADS is an open-source framework for model-based decision support employing 
system and physics simulation models. 

INTRODUCTION 

There is a pressing need for better tools that empower remedy selection for contaminated groundwater. The 
U.S. National Research Council recently estimated that the cost to clean up (i.e., remediate) sites that 
federal law mandates be remediated is over $100 billion with the Department of Energy's burden being 
approximately $20 billion [1]. Uncertainty plagues remedy selection. There is often substantial uncertainty 
in the contamination extent and concentrations, the rate and location at which contamination reaches the 
aquifer, the rate at which biogeochemical reactions are attenuating or exacerbating the problem, the 
direction and velocity of the groundwater flow, the rate and type of dispersion, diffusion and pore-scale 
mixing, large- and small-scale geological features and heterogeneities as well as performance and 
effectiveness of remedial actions; this list includes parametric and conceptual (potentially “deep”) 
uncertainties. The list could go on and each of these uncertainties could be further subdivided and 
expanded. On top of the listed known-unknowns, there are also unknown-unknowns. The 
unknown-unknowns are uncertainties for which we are currently unaware but potentially can have 
important impact on the decision processes. It is therefore not surprising that according to U.S. National 
Research Council report, court mandated remediations fail almost 90% of the time, often due to unforeseen 
uncertainties and complexities [1]. 

Decision-making process for environmental management of contaminated sites includes the development 
and selection of remediation strategies. Scientifically defensible evaluation of specific remedial actions in 
terms of both their environmental benefits and cost effectiveness requires a robust conceptual model of  
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Fig. 1: Location of the study site. Green and blue dots show the locations of aquifer and vadose zone 
monitoring wells, respectively. Red stars are municipal water supply wells. Recently observed Cr6+ 
concentrations (circa 2014) at each regional well are shown in purple [μg/ℓ]; the concentrations at 
two-screen wells (e.g. R-61) are shown as upper / lower screen values. The Cr6+ plume represents an area 
where concentrations are higher than 50 μg/ℓ (ppb). 

 

Fig. 2: Computational grid. The black regions on the top of the model grid define the well locations. The 
colors represent hydrostratigraphic. The top of the model represents the regional water table. The front side 
boundary is aligned along Rio Grande. 
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Fig. 3: Modeling workflow. 

 

Fig. 4: Modeling workflow: from observed data (a) to model-estimated drawdowns (b), to model-estimated 
aquifer heterogeneity (c) to model-predicted groundwater flow directions (d). 
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Fig. 5: Bayesian Information Gap (BIG) decision analysis. 

the site and systematic characterization of conceptual model elements related to processes governing 
contaminant migration in the subsurface. Conceptual model uncertainties can be estimated based on 
detailed analyses of the available qualitative and quantitative site knowledge. The decision process also 
identifies potential data and conceptual-understanding gaps requiring additional data acquisition to refine 
remedy selection. The decision-making process is facilitated by implementation of robust computational 
techniques for decision support that take into account existing site uncertainties. However, due to data and 
knowledge gaps as well as complex interdependencies between uncertainties (conceptual elements, model 
parameters, measurement/computational errors, etc.), the decision-support optimization problem is 
typically non-unique, and the model-prediction uncertainties are frequently difficult to quantify. The 
problem is non-unique because multiple solutions produce reasonable agreement with the site data. [2-4]. 
We have performed detailed investigation of site information related to a chromium plume in groundwater 
beneath Los Alamos National Laboratory (LANL). Over the years, we have performed detailed 
investigations of the site information including hydrogeological, geophysical, petrographic, and 
geochemical studies for site characterization. We have also developed a series of alternative conceptual and 
numerical models representing governing subsurface processes with different complexity and at different 
scales (resolutions). The current site conceptual model is supported by multiple lines of evidence from 
alternative analyses of the available data [5-8]. 

A map of the LANL contamination related to a chromium (Cr6+) plume in the regional aquifer beneath 
Sandia and Mortandad Canyons is presented in Fig. 1 [9]. The site computational grid and the model 
domain for one of the three-dimensional numerical models developed for the site is presented in Fig. 2 (for 
more information see [10]). The modeling workflow incorporates numerous computational tools and data 
streams presented in Fig. 3. In the context of these modeling workflow, a conceptual representation of how 
data are assimilated to produce model predictions of water-level drawdowns, aquifer heterogeneity and 
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groundwater flow is presented in Fig. 4. The developed modeling workflow is embedded in a decision 
framework presented in Fig. 5. The decision framework is described in the next section. 

METHODOLOGY 

The goal of the decision analyses is to provide scientifically defensible and economically feasible solutions 
to a complex contaminant remediation problem. The evaluation of remedial actions is based on their 
anticipated environmental impact. The conceptual model uncertainties are estimated based on detailed 
analyses of the available qualitative and quantitative site data. The decision process also identifies data and 
conceptual-knowledge gaps requiring additional data acquisition to refine remedy selection. The 
decision-making process is facilitated by implementation of robust computational techniques for decision 
support taking into account all the existing site uncertainties. 

Bayes' theorem is one of the most popular techniques for probabilistic uncertainty quantification (UQ). It is 
effective in many engineering situations, because it updates our understanding of the uncertainties by 
conditioning on real data using a mathematically rigorous technique. Bayes' theorem is mathematically 
rigorous, but its application in science and engineering is not always rigorous. There are two issues 
associated with practical application of Bayes' theorem. 

Issue 1: We can enumerate the possible outcomes of dice rolling, but not the possible outcomes of 
groundwater contamination remediation. For example, we cannot enumerate all the possible permeability 
fields that we can expect at a given site. Similarly we cannot enumerate all the possible outcomes of 
remedial activities. 

Issue 2: We can precisely determine conditional probabilities for coin tossing, but substantial uncertainty 
surrounds the conditional probabilities for groundwater contamination remediation. For example, we may 
have a given field observation (e.g. concentration of 50 ppb at a given monitoring well) and we may have a 
series of models that predict concentrations close to the observed value (e.g. model A and B predict 51 and 
49 ppb, respectively); in this case, it is challenging to define the likelihoods (conditional probabilities) of 
the models given this concentration information. 

Bayes' theorem is rigorously applicable beyond dice rolling and coin tossing, but applying Bayes' theorem 
to the real world may not work as well as one might expect. Bayes' theorem is rigorously applicable only if 
all possible events can be described, and their conditional probabilities can be derived rigorously. To 
overcome these issues, we employ a Bayesian Information Gap Decision Analysis. Bayes' theorem is 
applied for conditioning on available data, capturing the parametric uncertainty. The methodology employs 
a non-probabilistic uncertainty quantification (UQ) methodology called Information-Gap Decision Theory 
(IGDT) to capture conceptual model uncertainty (overcoming Issue 1 above) and uncertainty in the 
conditional probabilities used in the application of Bayes' theorem uncertainty (overcoming Issue 2 above). 
The decision workflow in conceptualized in Fig. 5. More details about the developed methodology are 
presented in [11]. Additional applications of Information Gap Decision Theory for groundwater problems 
are presented in [12-13] 

The Bayesian-Information-Gap approach to UQ is independent of the physical model and implemented in 
the existing open-source MADS code [14-16]. This makes it possible to employ the approach on a laptop 
with simple physical models or a supercomputer with complex physical models. MADS is capable to 
perform various types of model analyses including sensitivity analysis, parameter estimation, uncertainty 
quantification, model calibration, selection and averaging. MADS is designed to provide an interactive 
computer-based Decision Support System (DSS) that will help domain scientist, managers, regulators, and 
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stakeholders to make decisions related to site characterization, monitoring design, and remedial activities 
based on data- and model-driven decision-support analyses exploiting high-performance computing. 

APPLICATION 

The site conceptual model describes the processes controlling the movement of groundwater and 
contaminants in the environment. The current conceptual model is explained in detail in [8], and supported 
by multiples lines of evidence. The establishment of the current conceptual model involved field, laboratory 
and modeling analyses [8]. Based on the site conceptual model we developed two synthetic contaminant 
remediation problems. Additional information about the site conditions is presented in [17-18]. 

In the first scenario, a contaminant is released for one year (from t=0 to t=1 years; Fig.6). The contaminant 
is monitored at 19 wells as times ranging from 0 to 10 years. Data for the contaminant concentrations at the 
monitoring wells are synthetic and were produced via a computer simulation. The observations for the 
contaminant concentrations at the monitoring wells are computed assuming that the contaminant source is 
box-shaped with a constant mass flux and the plume undergoes advection with a constant drift, classical 
dispersion in the y and z directions, fractional Brownian dispersion in the x direction, and first-order decay 
(representative of in-situ contaminant degradation; for example, biogeochemical reduction). Of course, in 
practice, the contaminant concentrations at the monitoring wells will come from measurements rather than 
simulations. At t=10 years, a decision must be made concerning the remediation of the contaminant. The 
desired outcome is that the contaminant concentration at a point of compliance be below the MCL for the 
next 40 years (from t=10 to t=50 years. The source has dimensions 250 m x 250 m x 1 m. Two remedial 
actions are analyzed. One is the NA case, where it is deemed that naturally occurring biogeochemical 
reactions and dispersion are sufficient to reduce the contaminant concentrations below the Maximum 
Concentration Limit (MCL). The other is an approach to EA where a stimulant that converts the 
contaminant into an innocuous substance is injected into the contaminant plume (e.g., bioremediation 
induced by injection of oxidization agent such as alcohol). In the case of NA and EA, first order reactions 
are assumed. Parametric uncertainty is considered in the naturally occurring reaction rate and the 
mechanism of longitudinal aquifer dispersion. 

In summary, there are 10 contaminant concentrations observed at each of 19 monitoring wells representing 
190 data records. There are 2 uncertain model parameters with distributions informed via Bayes' theorem 
by the observed concentration data. The decision analysis proceeds by computing the decision robustness. 
Conceptually, this can be understood to consist of three nested loops. The outer loop iterates over increasing 
values of the horizon of uncertainty related to our information-gap decision model. The middle loop iterates 
over possible conditional distributions for the model parameters. The inner loop performs a Markov chain 
Monte Carlo iteration to sample from the posterior distribution for the model parameters. The samples are 
used to compute the probability of failure given the model uncertainty. 

The decision-analyses results suggest that for both the NA and EA scenarios, the nominal probability of 
failure is approximately zero. Therefore a classical Bayesian analysis will predict that both remedial actions 
are equally good and there are no preference for performing EA over NA. However, this decision has zero 
robustness. Fig. 7 depicts the robustness (horizontal) versus acceptable probability of failure. The overall 
robustness of the two remediation approaches is found by locating the value of robustness where the curves 
intersect the dashed line in Fig. 7 which defines the maximal acceptable probability of failure. The decision 
robustness for the NA and EA scenarios are 0.34 and 0.78 respectively. This indicates that  
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Fig. 6: Network of wells and contaminant source for scenario 1. The 19 monitoring wells are shown with 
filled-in circles, the contaminant source location is represented with a square, and the point of compliance is 
shown by a hollow circle. The colors show the observed concentrations at t=10 years. 

 

Fig. 7: The decision robustness (horizontally) as a function of the maximum chance of failure (vertically) 
for scenario 1. With both remediation approaches, the nominal chance of failure is approximately zero 
when the robustness is equal to zero. However, the maximum chance of failure remains low over a 
substantially larger uncertainty range for EA compared to NA. 



WM2015 Conference, March 15 – 19, 2015, Phoenix, Arizona, USA 

 

8 

 

 

Fig. 8: Network of wells and contaminant source for scenario 2. The 19 monitoring wells are shown with 
filled-in circles, the contaminant source location is represented with a square, and the point of compliance is 
shown by a hollow circle. The colors show the observed concentrations at t=10 years. 

 

Fig. 9: The robustness (horizontally) as a function of the maximum chance of failure (vertically) for 
scenario 2. Note that in this scenario, the EA approach provides little additional robustness. 
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substantially more uncertainty can be tolerated by EA before the failure might be possible. The robustness 
value of 0.34 for NA means that the concentrations may exceed the MCL with only a 34% model error and 
within a relatively small window around the nominal conditional distributions. Relative to the severe 
uncertainties typically present in subsurface remediation problems, this is a modest amount of uncertainty. 
Therefore, and despite the fact that the nominal probability of failure for NA is nearly zero, it would be 
prudent in this scenario to perform the EA remediation strategy. The maximum probability of EA failure 
increases rapidly providing further support for this perspective. 

In the second scenario, the location of the compliance point is modified (Fig. 8). The compliance point has 
been relocated and it is not aligned with the transport direction of the contaminant plume center of mass. 
Fig. 9 plots the robustness (horizontally) as a function of the maximum chance of failure (vertically). In this 
scenario, both remediation approaches have a small chance of failure over a relatively large uncertainty 
ranges. The robustness for the EA approach is approximately 1.35, compared to 1.34 for the NA approach. 
In this scenario, the NA approach is likely to succeed even after allowing for substantial modeling error 
(134% model error) as well as a relatively broad neighborhood around the nominal conditional distribution 
used in Bayes' theorem. Therefore, the NA approach may be sufficient in this case. The EA approach 
provides only a very small amount of additional robustness. Therefore, it is not a strong alternative to the 
NA approach. If the robustness provided by NA is insufficient, the robustness provided by EA is very likely 
to be insufficient as well. In this case, it may be prudent to find an alternative remediation approach which 
can be also included in the presented decision support framework. In this scenario, the decision analyses 
suggest that the EA does not substantially increase the robustness. By the time the EA has been 
implemented, the peak concentrations have already been observed at the compliance point. The aquifer 
dispersion has a much stronger impact on reducing the contaminant concentrations at the point of 
compliance than increasing the reaction rate. In this scenario, it would not be practical to perform the EA. If 
the robustness provided by NA is deemed insufficient, and alternative remediation approach should be 
pursued. 

CONCLUSIONS 

Unknowns and uncertainty play a significant role in selecting a remedy for contaminated groundwater. 
Measurement errors, parametric uncertainties, and model inadequacies all contribute to these unknowns 
and uncertainties. We have described a decision support framework that takes these unknowns and 
uncertainties into consideration. The framework represents a general, comprehensive, and novel approach 
for dealing with a diverse range of uncertainties and unknowns associated with model-based decision 
analyses. Applications of this approach are not limited to groundwater remediation problems. It can applied 
to engineering fields that combine data and models to make decisions: e.g., climate change, energy 
production, waste storage, carbon sequestration, etc. 

All the applied computational tools are embedded in the code MADS (http://mads.lanl.gov), which 
provides a computationally efficient and robust framework for various types of model analyses related to 
decision support; it also includes advanced novel optimization techniques [e.g. 19-20]. This allows for 
computationally efficient, reproducible and defensible model-based analyses for decision support. 
Currently, MADS algorithms are also being implemented in a Decision Support Toolbox of ASCEM 
(Advanced Subsurface Computing for Environmental Management; http://ascemdoe.org) code 
development project funded by the U.S. Department of Energy, Environmental Management. ASCEM 
targets development of an interactive computer-based Decision Support System (DSS) that will help 
domain scientists, managers, regulators, and stakeholders make decisions related to site characterization, 
monitoring design, and remedial activities based on data- and model-driven decision-support analyses 
exploiting high-performance computing [21-22]. 

http://mads.lanl.gov/
http://ascemdoe.org/
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