
 
WM2011 Conference, February 27 - March 3, 2011, Phoenix, AZ 
 

Optimized Spectral Transformation for Detection and Classification of 
Buried Radioactive Waste - 11310 

  
Wei Wei 1, Qian Du 1, Nicolas H. Younan 1, Charles Waggoner 2, Donna Rogers 2 

 
1 Department of Electrical and Computer Engineering 

2 Institute for Clean Energy Technology 
Mississippi State University, MS 39762, USA 

 

ABSTRACT 

We investigate detection and classification of buried radioactive materials of interest 
using data collected by a Sodium Iodide (NaI) detector with short sensor dwell time (i.e., 
less than or equal to 1s). The objective of detection is to detect a target from background 
or non-target materials, while the objective of classification is to classify targets buried at 
different depths. Three spectral transforms using binned energy windows can help 
alleviate the negative impact from background and suppress trivial spectral variation. 
However, their performance is sensitive to bin partition parameters including the number 
of bins and their bin-widths. We have developed a particle swarm optimization (PSO)-
based automatic algorithm to determine these parameters. In this paper, we propose to 
apply multi-objective PSO to optimize both the detection and classification accuracy 
simultaneously. The experimental results demonstrate that the multi-objective PSO can 
achieve the balance between these two objectives, and it may provide even better 
individual performance than a single-objective PSO. 
 
 
INTRODUCTION 

Several approaches have been developed in detecting radioactive materials [1][2][3][4]. 
One of the most common and simple detection criteria used is the gross count (GC) of 
spectral counts within different spectral energy bands [1]. Spectral measurements of illicit 
sources or targets will have higher counts in specific energy bands, and this information 
can be used for detection. Another common method is to transform the spectra based on 
the difference between target and benign sources on certain energy bands. This method is 
referred to as the spectral comparison ratio (SCR) method [2][3]. If the ratio indicates 
that the unknown measurement is not similar to the benign measurement, the unknown 
measurement is likely that of the target. Principal Component Analysis (PCA) has also 
been utilized to analyze spectral measurements and major principal components will be 
used as new features for detection or classification purpose [4].  
 
In our research, we investigate the solutions to the problem of detecting and classifying 
buried depleted uranium (i.e., the target) in soil at varying depths. The spectra are sparse 
due to short sensor dwell time, where spectral transformation using binned energy 
windows can help improve the performance and alleviate the interruption by background 
sources. But the problem of choosing appropriate energy channels for energy windows 
used in spectral transformation is still an open problem. For simplification purpose, we 
assume an energy channel is partitioned into one and only one window or bin; in other 
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words, the partition is non-overlapping and for all the channels.  Particle swarm 
optimization (PSO) is employed in this work, which is an evolutionary computation 
technique proposed and developed by Kennedy and Eberhart [5][6][7]. PSO has been 
widely used in many engineering optimization problems. It is proved to be a very 
efficient optimization algorithm by searching the whole problem space. In this research, 
two swarms of particles are employed to simultaneously select the optimal number of 
bins and the corresponding optimal bin-widths. 
 
The method in [2] was developed to detect illicit sources from benign sources based on 
the anomaly test. It is a two-class classification problem for differentiating a target from a 
benign source. It is not suitable to the multi-class classification problem in this work. 
Therefore, in this paper, k-nearest-neighbor (kNN) classifier is used for two-class 
detection and multi-class classification. In the process of optimization, two different 
accuracy criterion functions can be used to achieve different objectives, i.e., detection and 
classification. In multi-objective PSO, a multi-objective function is employed to jointly 
optimize the two objectives, resulting in well balanced performance. 

 
 
PROPOSED METHODS 

Spectral transforms 

Most previous methods of radioactive target detection analyze the measured spectrum 
based on the total number of gamma-ray particle counts, i.e., GC. In our research, we 
utilize the entire energy spectrum. However, there are some difficulties when analyzing 
such “energy spectral signatures”: 1) variability and uncertainty exist in the measurement 
that collection hardware always introduces to; 2) background has significant impact on 
the measurements, particularly when the target is buried. Thus, spectral transforms are 
applied so that sparseness and randomness in an original spectrum can be reduced while 
the discrepancy between target and background can be magnified.  
 
Three spectral transformation methods are presented as follows for a spectrum partitioned 
into non-overlapping bins. For the k th bin, the energy counts is for channel i denoted 
as P(i). Spectral bin energy (SBE) sums the energy counts in each bin as shown in 
equation (1). Spectral bin difference (SBD) in equation (2) computes the sum of the 
counts in each bin subtract the counts of background in the same bin location. Spectral 
comparison ratio (SCR) in equation (3) computes how closely a spectrum matches that of 
background on the basis of spectral ratio in the same bin [2]. Fig.1 shows the target and 
background spectra before and after transformation. 
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                                 (a) Original                 (b) SBE 

     
          (c) SBD              (d) SCR 

Fig. 1 Original and transformed spectra of the target buried at 15cm. 

Basic PSO 

The PSO algorithm performs optimization in continuous, multi-dimensional search 
spaces. The search starts from random positions distributed in the problem space. It is 
very similar to other evolutionary computation algorithms in the three aspects: 1) it uses a 
large size of random particles as initials; 2) the optimum objective function is found by 
updating the generations; and 3) evolution updating involves the previous generations. 
The possible solutions called particles are flown through the problem space following the 
current optimal solution. The PSO is adopted in our research because of its fast 
convergence and global optimum searching ability. 
 
The update of particles [6][7] is accomplished by using equation (4) which calculates the 
new velocity for each particles based on the previous velocity , the particle’s location 
(  or ) that it has reached so far so best for the objective function and the particle’s 
location among the globally searched solution (  or ) that has reached so far so 
best for the objective function. These particles are all potential solutions and their 
locations are updated by equation (5) in the solution hyperspace. There are two random 
numbers  and  are independently generated. And the inertia weight w  is used as the 
scalar of previous velocity  which provides improved performance in various 
applications [7]. In equation (4), rand(.) denotes a generated random variable. 
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Multi-objective PSO 

In reality, the overall detection (OD) accuracy and overall classification (OC) accuracy 
are the objectives we concern the most. We assume the data can be divided into two 
classes: target and non-target. OD measures percentage of the number of samples 
correctly classified into these two classes. In addition, the targets (and non-targets) buried 
at various depths can be seen as different classes, and OC measures the overall accuracy 
that samples are classified into their own class. Here, we can take into account both 
functions separately as the criterion function as equation (6) or (7). Or, we can maximize 
both simultaneously as equation (8), where the two objective functions are combined into 
one by employing weighting coefficients. Two weighting coefficients  and are used 
to gauge the importance of certain objective functions within the optimization process. In 
our experiments, they are set as 0.5.  

1a 2a

)max(OD                                                            (6) 
)max(OC                                                            (7) 

)max( 21 OCaODa +                                                   (8) 

Performance evaluation 

K-nearest-neighbor (k-NN) techniques are commonly used in pattern classification, 
which classifies objects into a predefined number of categories based on a given set of 
predictors [8]. Even in the situations when variables exhibit a highly nonlinear 
relationship between each other, k-NN may still be able to provide excellent performance. 
For simplicity and robustness, 1-NN is used in our experiments. 
 
In order to eliminate the effects of biased selection of training and testing samples, the T-
fold cross-validation is introduced where the fold number T is suggested to be chosen 
between 5 and 10 [9]. The T-fold cross-validation divides all the samples into T 
subsamples. Among the T subsamples, one subsample is taken for validation and the 
remaining T – 1 subsamples are used as training data.  The process is then repeated T 
times, with each of the T subsamples is used exactly once as the validation data. All the T 
results from the folds are averaged to produce a single estimation for criterion function. 
All samples are included for both training and validation, and each sample is used for 
validation exactly once.  
 

EXPERIMENTS 

Laboratory data was acquired by a 10×10×40 cm sodium iodide (NaI) scintillation 
detector. The measured spectra were taken over the energy range from 0 keV to 2160 
keV. The target was a cylindrical object with 4.3 kg mass. The background conditions 
consisted of construction sand, and small uranium ore acted as a benign material. Buried 

http://en.wikipedia.org/wiki/Scintillator
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at different depths of 15 cm, 23 cm, 30 cm, 45 cm, 60 cm, 75 cm, and 90 cm, the 
radiation energy from the target would decrease nonlinearly. Natural ore in a quart-size 
plastic bag was buried at 45 cm and 75 cm depth. For each class, there were 24 samples 
were taken evenly by four different dwell time. Sensor dwell time (i.e, counting period) 
was varied from 1 s, 0.5 s, 0.25 s, to 0.1 s. In our experiment, all the measurements were 
normalized into equivalent 1 s dwell time. In this experiment, 1-NN with 6-fold cross-
validation was applied for the classification.  OD was calculated when all the seven target 
classes were treated as a single class and natural ore and background as the other, while 
OC was computed when the ten classes were considered as individual classes. 

If the bin-width is the same for all the bins, then exhaustive search is doable. To achieve 
the maximum OD, the optimal uniform bin-width for SCR, SBE and SBD were 7, 11, 11; 
to achieve the maximum OC, they became 7, 12, 12; to achieve the multi-objective 
optimization, they were 7, 12, 12. For varied bin-widths, the single-objective and multi-
objective PSO were applied to determine the number of bins and bin-widths. 10 repeated 
runs were implemented, and the mean values were presented in Tables I, II, and III. 
Using GC, OD = 0.779 and OC = 0.555; using the original data without any spectral 
transform, OD = 0.900 and OC = 0.825.  
 
Table I summarized OD when OD was the objective. For the three spectral 
transformation methods SBE, SBD and SCR, the uniform bin-width provided moderate 
OD because it fixed all bin-widths to the same and could not divide the spectrum 
adaptive to the energy peaks or features. However, the varied bin-width optimization 
would adjust the optimal number of bins and their corresponding widths so that an energy 
window could adaptively capture the interest energy peaks and combine them together. 
As the consequence, OD was improved. OC was derived with the corresponding bin 
parameters. Compared to GC and the case without spectral transform, both OD and OC 
were increased. 
 
Table II summarized OC when OC was the objective. The varied bin-width PSO still 
provided a higher accuracy than the exhaustively searched uniform bin-width. Again, OD 
was derived with the corresponding bin parameters. Comparing Table I and II, we can see 
that our optimization method enhanced the desired accuracy function as we set it as our 
criterion function in the optimization process. This is why the OD in Table I is larger than 
the counterpart in Table II, and OC in Table II is larger than that in Table I.  
 
Table III summarized the multi-objective function value, retrieved OD and OC, when the 
multi-objective function was the searching criterion. Compared the results in Table I and 
II, we notice that OD values were close to those when OD was the single objective to be 
optimized; similarly, OC values were close to those when OC was the single objective.  
 
For PSO, the mean values of 10 runs were presented in the tables. To better show the 
performance statistics, boxplots with the information of mean and standard deviation 
were drawn in Fig. 2. They further confirmed that the multi-objective PSO (denoted as 
“OD/OC’) provided the comparable performance in the one optimized by a single-
objective PSO (denoted as “OD” or “OC”). However, as shown in Fig. 2(c), the multi-
objective PSO provided a better joint performance. 
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Table I.  The resulting performance when the objective is overall detection accuracy 

 OD OC 

Uniform bin-width SCR 0.879 0.788 

Uniform bin-width SBE 0.946 0.867 

Uniform bin-width SBD 0.946 0.867 

Varied bin-widths SCR (PSO) 0.969 0.840 

Varied bin-widths SBE (PSO) 0.978 0.904 

Varied bin-widths SBD (PSO) 0.980 0.908 
 
 

Table II. The resulting performance when the objective is overall classification accuracy 

 OD OC 

Uniform bin-width SCR 0.879 0.788 

Uniform bin-width SBE 0.942 0.875 

Uniform bin-width SBD 0.942 0.875 

Varied bin-widths SCR (PSO) 0.934 0.888 

Varied bin-widths SBE (PSO) 0.969 0.945 

Varied bin-widths SBD (PSO) 0.970 0.946 
 
 

Table III. The resulting performance when the multi-objective function is to be optimized 

 
Multi-objective Function 

(0.5 OD + 0.5 OC) 
OD OC 

Uniform bin-width SCR 0.833 0.879 0.788 

Uniform bin-width SBE 0.908 0.942 0.875 

Uniform bin-width SBD 0.908 0.942 0.875 

Varied bin-widths SCR (PSO) 0.922 0.954 0.890 

Varied bin-widths SBE (PSO) 0.961 0.982 0.940 

Varied bin-widths SBD (PSO) 0.960 0.976 0.943 
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(a) Detection Accuracy (OD) 

 
(b) Classification Accuracy (OC) 

 
(c) Multi-objective function value (0.5 OD + 0.5 OC) 

 
Fig. 2 Boxplots for PSO-based bin optimization. 
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CONCLUSION 

In this paper, we propose an adaptive optimization system with PSO to automatically 
determine the optimal number of bins and the corresponding optimal varied bin-widths 
for energy spectral transformation. It can provide better performance than using uniform 
bin partitions. To achieve high detection and classification accuracy simultaneously, the 
system deploys a multi-objective PSO, which can well balance the detection and 
classification performance when both are of great concern in a practical application. 
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