
WM2011 Conference, February 27 - March 3, 2011, Phoenix, AZ 

Anomalous Transport in Fractured Geologic Media: Basic Physical Models - 11134 

Leonid A. Bolshov*, **, Igor I. Linge*, Olga A. Dvoretskaya *, Peter.S. Kondratenko*, **, 
Leonid V. Matveev* 

*Nuclear Safety Institute of Russian Academy of Sciences 
52 Bolshaya Tul’skaya St., 115191 Moscow, Russia 

**Moscow Institute of Physics and Technology (State University) 
9 Institutskii per., Dolgoprudny, 141700 Moscow Region, Russia 

 
 
ABSTRACT 
An overview of the problem of contaminant transport in heterogeneous geological media is 
given. The main physical principles causing anomalous transport regimes in fractured rock media 
are identified. Five theoretical models taking into account specific features of geologic media and 
manifesting non-classical transport behavior are presented and compared with data from field 
observations. 
 
INTRODUCTION 
An extensive amount of field observations accumulated in the last decades evidences that in 
many cases classical laws can not describe contaminant transport processes in geologic media as 
discrepancies may be of several orders [1]. In this regard, research of non-classical transport was 
undertaken at Nuclear Safety Institute of Russian Academy of Sciences (NSI RAS) to describe 
radionuclide migration processes in fractured rock media. Specific features of fractured rock 
formations giving rise to anomalous transport were singled out and a number of physical models 
for anomalous transport taking into account specific features of geologic media and manifesting 
non-classical transport behavior transport processes in geologic media were developed. Special 
attention was paid to the analysis of concentration asymptotic structures at far distances from a 
contaminant source, which is of primary importance for assessment of the reliability of 
radioactive waste disposal. To perform the study we take advantage of scaling analysis, the 
Feynman diagram technique developed in [2] and other tools of modern theoretical physics.  

The aim of this paper is to give an overview of the most important results obtained in this study. 
In the next section the main factors causing non-classical transport in geological media are 
presented. Six further sections are devoted to the basic physical models taking into account 
specific features of geologic media and manifesting non-classical transport behavior. In the 
penultimate section, the results are compared with experimental data. Concluding remarks are 
given in the final section. 

MAIN FACTORS DETERMINING ANOMALOUS TRANSPORT IN FRACTURED 
MEDIA 

One of the key factors determining moisture seepage and contaminant transport in geological 
media is the geometry of the fracture networks. Such systems as a rule can be classified as 
percolation media. Their characteristics are determined by the connectivity property of their 
structural elements. These elements are combined into clusters inside of which moisture 
migration and solute transport are effective, while between separate clusters these processes are 
weak. Two characteristics of percolation media are most important. The first one is the existence 
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of a percolation threshold. Below the threshold, there are only finite clusters, and stationary 
processes of moisture infiltration in the infinite medium are ineffective. Above the percolation 
threshold, the medium contains an infinite cluster and the transport is not limited with respect to 
spatial range. The second characteristic of percolation media is the correlation lengthξ . Below 
the percolation threshold, cluster sizes l  are in the range ξ<l  (the number of clusters with 
length scale ξ>>l  is exponentially small). In this case, each individual cluster in the scale 
interval from a certain , which we call the lower truncation size, to the dimension of the cluster 
itself has fractal properties (see Ref. [3]). This means that the cluster as a geometric object has 
not integral but fractal space dimension. On approaching the percolation threshold, the 
correlation length tends to infinity, 

a

∞→ξ , and an infinite cluster arises in the medium. Above 
the percolation threshold the parameter ξ  becomes finite again. The percolation medium in this 
state is fractal at scales a l ξ< < , and is statistically homogeneous at scales ξ>>l . 

A basic mechanism of tracer transport in fractured rocks is through advection during moisture 
seepage. Percolation systems of fractures tend to be highly disordered, so solute advection is a 
random process. Because of the fractal nature of percolation clusters, correlations of the 
advection velocity are long-ranged (decaying according to a power law). Due to this factor and 
because advection is a rather fast transport mechanism, it may provide a super-diffusive transport 
regime [1] with 21 />γ  in the relation 

( )R t tγ∝  (Eq. 1) 

for the dependence of contaminant plume size on time (remind that 1/ 2γ =  corresponds to 
classical diffusion). 

Another important aspect for transport processes in geological media arises from sharply 
contrasting properties, caused by the presence of a low-permeability matrix. For solute transport 
through fractures containing moisture, the matrix plays the role of traps and ultimately gives rise 
to slowing down infiltration and solute transport. Along with this, a percolation cluster has a 
complicated topological structure, consisting of a backbone and a set of dead ends. The backbone 
connects remote parts of the cluster, whereas dead ends are connected with the backbone at only 
one point, remaining isolated from each other and from other domains of the backbone. 
Therefore, with respect to infiltration and transport processes, dead ends also play the role of 
traps. They together with the matrix may be considered as a low-permeable subsystem of the 
fractured geological medium, in contrast to the connected fractures of the backbone, which form 
a high-permeable subsystem. 

With regard to the existence of two contrasting subsystem, all tracer particles may be subdivided 
into two parts: “active particles,” which are those in the high-permeable subsystem, and “passive 
particles,” which reside in the low-permeable subsystem. Of primary interest are the active 
particles because of their high effective mobility. The presence of a low-permeability subsystem 
has two important consequences. The first one is that the number of active particles will decrease 
over time, as some of them become trapped. The second consequence of the presence of a low-
permeable subsystem is to slow down solute transport, promoting a sub-diffusive transport mode 
(Ref. [1]) with 1 / 2γ <  in (Eq. 1). 

One more important factor forming transport processes in geological media is the strong 
fluctuations of the moisture seepage characteristics (Ref. [1]), that arise due to the random 
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structure of geological media. The evolution of solute concentrations in space and time depends 
on the specific location of the initial solute concentration distribution (source region). Therefore, 
spatial fluctuations of medium characteristics may effectively renormalize the solute source 
power. 

Further we present a number of physical models to describe non-classical contaminant transport 
in geological media taking into account above listed factors. 

 

RANDOM ADVECTION WITH INFINITE CORRELATION LENGTH (ξ →∞ ) 

A basis of the model is the equation for particle concentration ( )t,rc r   

( ) 0=∇+
∂
∂ cv

t
c r  (Eq. 2) 

The volumetric moisture flux  is a random function of coordinates obeying incompressibility 
equation 

( )rv rr

0=vdiv r  and the condition ( ) 0>=< rv rr , where >⋅⋅⋅<  is the average over an ensemble 
of realizations. Flux correlations at large distances decrease according to the power law and the 

- point correlation function defined by the equality n

( ) ( ) ( ) ( )
1 2 1 2... 1 2 1 2, ... ...

n ni i i n i i i nK r r r v r v r v r=< >
r r r r r r  

is a uniform function of the order  at nh− i jr r a− >>
r r  (for all pairs of ji rr rr , ), where  and  

is a short-range truncation radius. In particular, for the pair correlation function we have 
0>h a

( ) ( ) ( ) ( 22
1 2 1 2 1 2~ /

h
ij i jK r r v r v r V a r r− ≡< > −
r r r r r r )                                                                       (Eq. 3) 

where V  is the characteristic value of ( )1 2ijK r r−r r  at 1 2r r a− <
r r . 

The main results of the analysis of the random advection model (Ref. [4, 5]) consist in the 
following. At  contaminant transport corresponds to classical diffusion with the diffusivity 

. At  the contaminant concentration averaged over an ensemble of medium 
realization 

1h >
1<~D Va h

( ) ( ), ,c r t >
rc r t ≡<

r  is determined as ( ) ( ) ( ) (3, ,c r t NR t r R tζ ζ−= Φ = )/r    

Here ( ) 10 ~Φ  and ( ) 0→Φ ζ  for ∞→ζ ;  is the total number of contaminant particles. The 
quantity , defined as 

N
( )tR

( ) ( ) ( ) 11hR t a Vt with h
γ

γ −= = +                                                                                (Eq. 4) 

determines the contaminant plume size at time t . Since 2/1>γ  for 1<h , the transport regime 
under this condition corresponds to the super-diffusion mode. 

The asymptotic behavior of concentration at large distances is 

( ) ( )( ) ( )1 /, exp , ~ 1h hc r t A A at r R tζ +∝ − >>
r . (Eq. 5) 
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Note that ( )  in the exponent of 1 /h h+ > 2 (Eq. 5) at 1h < . Therefore, the concentration decay in 
the super-diffusion regime of random advection model is of contracted exponential type and is 
even faster than the Gaussian one in classical diffusion (see Fig. 1). This is in sharp contrast to 
fractional diffusion (formally a mathematical model based on fractional spatial derivatives), 
whose tails are of the power-law type. 

 
Fig. 1. Gaussian (classical), super-diffusive and “heavy” power-like concentration tails 

RANDOM ADVECTION WITH FINITE CORRELATION LENGTH (ξ < ∞ ) 

Under the condition of finite correlation length, the advection velocity may be represented in the 
form 

( ) ( )v r u v r′= +
r r r r r , (Eq. 6) 

where . The correlation function of the “random” term ( )u v r=< >
r r r ( )v r′r r  possesses the 

properties of (Eq. 3), which are now valid only at 1 2a r r ξ<< − <<
r r . All correlations decay at 

i jr r ξ−
r r

>  exponentially fast. The main results of the analysis of this model (Ref. [5, 6]) are as 
follows. 

At short times, t tξ< , where , in the case of 1/ /h ht u aξ ξ ξ += ≈ V 1h < , the results reduce to 
random advection with infinite correlation length (see previous section). At long times, when 
t tξ> , the classical diffusive regime is realized: 

( ) ( ) ( )( )3/2 2, 4 exp / 4 ~eff eff effc r t N D t r ut D t with D uπ ξ
−

= − −
r r r . (Eq. 7) 

This expression is valid at r ut ut− <<
r r . 
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Fig. 2. Contaminant plume size 1h <  (2a) and two-stage concentration tail at t tξ>  (2b)  

 

At large distances r ut ut− >>
r r , the concentration behavior is described by the asymptotic 

expression (Eq. 7), which also provides the concentration asymptotics at short times for 1h < . 

Therefore, in the case of finite correlation length, ξ < ∞ , the concentration tail at t tξ>  has a 
two-stage structure. The near stage is the classical one, while the far-tail stage corresponds to 
superdiffusive asymptotics. The transition between the two stages of asymptotics occurs when 

( )exp / ~ 1.c At t with Aξ∝ −  (Eq. 8) 

Contaminant plume size at  and two-stage concentration tail at t1h < tξ>  are represented 
schematically in Fig. 2. 

REGULAR HETEROGENEOUS MEDIUM WITH SHARPLY CONTRASTING 
PROPERTIES 

We consider contaminant transport in a highly contrasting heterogeneous system consisting of a 
high permeability medium (medium I) with diffusivity  and a low-permeability medium 
(medium II) with diffusivity  such that  which was first studied by Dykhne [7]; for this 
reason later it was called the Dykhne’s model [8].  

D
d D >> d

Contaminant transport in the highly permeable medium is governed by the advection–diffusion 
equation  

n u n D n
t

∂
+ ∇ = Δ

∂
r  (Eq. 9) 

where u  is the advection velocity and  is the concentration of active particles (those located in 
medium I). Contaminant transport in the low-permeability medium is governed by the classical 
diffusion equation for the concentration  of particles in that medium: 

r n

c

с d c
t
∂

= Δ
∂

 (Eq. 10) 
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We use standard boundary conditions of continuity for the concentration and normal flux of 
particles. 

Transport regimes in such a system depend on the geometry of the highly permeable medium and 
on relations between parameters describing migration properties. We consider two examples of 
the highly permeable medium: a plain-parallel layer of thickness , and a straight cylinder (not 
necessarily a circular one) of cross-sectional area   (see Fig. 3). 

a
2~ aS

 

 
Fig. 3. Two geometric configurations of highly permeable medium: a) a plain-parallel layer, and 
b) a straight cylinder. 

Two characteristic times  and  defined by 1t ut

2

4
u
Dtu =  and 

d
at
4

2

1 = , (Eq. 11) 

as well as the degree of the medium contrast dD  determines the behavior of the system. 

Plane-parallel layer. 

1) For dDttu 1>>  the behavior of the system is practically independent of advection. Tracer 
transport occurs in three stages. 

On the first stage, for , tracer particles do not leave medium I, so that tracer transport 
occurs in the regime of classical diffusion: 

1tt <<

( )
21, exp

4 4
G t

Dt Dt
ρρ

π
⎛ ⎞

≅ −⎜
⎝ ⎠

r
⎟  (Eq. 12) 

where ρr  is the two-dimensional radius vector in the plane of the layer, and ρ ρ=
r . 

In the interval  with 21 ttt <<<<
2

2 1
Dt t
d

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, the low-permeability medium acts as a trap for 

tracer particles, so that the number of active particles decreases with time as 

( )
t
tNtN 1

0~ , (Eq. 13) 
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and the tracer plume size grows with time as  

( ) ttDtR 14~ . (Eq. 14) 

Therefore, a subdiffusive regime with 
4
1

=γ  in (Eq. 1) takes place. 

For times  the influence of low-permeability medium becomes dominant, so that the 
transport proceeds in the regime of slow (with diffusivity ) classical diffusion:  

2tt >>
d

( )
2

3 44
an ,t exp

dtdt
⎛ ⎞

≅ −⎜
⎝ ⎠

⎟
ρρ

π
. (Eq. 15) 

An important feature of the transport is that the change of the regime in time leads to the multi-
stage tail structure similar to the case of the finite correlation length in fractal medium (see 
previous section). For example, for the second time interval, 21 ttt <<<< , when the subdiffusive 
regime occurs, the nearest tail segment is described by  

( )
2/31, exp 3

42 6
G t

Dt
ηρ

π

⎧ ⎫⎪ ⎪⎛ ⎞≅ −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

r , with   
ttD 1

2

4
ρη = . (Eq. 16) 

However, at the distances taDd 2>>ρ  concentration dependence (Eq. 16) transforms to 
(Eq. 12), corresponding to the fast classical diffusion. Similarly, on the stage of the slow classical 
diffusion (Eq. 15) the nearest tail segment (1.7) changes at distances Datd 2>>ρ  to the 

dependence (Eq. 16) and then at taDd 2>>ρ  to (Eq. 12). This law turns out to be valid for all 
further cases, so we will not thoroughly describe the tail structure, bearing in mind that it can be 
easily restored from the time sequence of transport regimes. 

2) For dDttt u 11 <<<<  the following sequence of transport regimes takes place. 

In the time intervals  and  1tt << 1
2

1 tttt u<<<< the transport, as before, occurs in the regimes of 
the fast classical diffusion (Eq. 12) and subdiffusion (Eq. 16), respectively. At times 1

2 ttt u>>  a 
new quasi-diffusive regime is formed  

( ) ( )
2

3 3
1

4, exp 1 cos ,
2 416 2

u

u

ut uG t
D DD u t t

ρ ρρ
π ρ

⎡ ⎤+
≅ − −⎢ t

ρϕ − ⎥′′ ⎣ ⎦

r  (Eq. 17) 

where ϕ  is the angle between radius-vector ρ
r

 and the direction of advection velocity ,  ur

u
tt ρ
−=′ ., and  This regime is characterized by the decrease of the total number of 

active particles, and by a strongly asymmetric concentration profile. The left wing of 
concentration distribution has the form of power-law train (see also [9]), and the right one is 
exponentially short. 

2
1uD u t=

3) If the advection velocity is large enough, so that 1ttu << , the following regimes are realized. 
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For  the classical two-dimensional fast diffusion occurs transforming in the time interval 
 into the classical advection diffusion 

utt <<
tt <<<< 3tu

( ) ( )2
1, exp

4 4
ut

G t
Dt Dt

ρ
ρ

π

⎛ ⎞−
⎜≅ −
⎜
⎝ ⎠

r r
r ⎟

⎟
. (Eq. 18) 

For , where , the transport is determined by the quasi-diffusion regime 3tt >> ( )1 32
3 1

/
ut t t=

(Eq. 17). 

Note that in the cases 2) and 3) for the plain-parallel layer the slow diffusion regime (Eq. 15) do 
not come, as the dispersion due to the transport over medium I, is larger than one due to the 
regime (Eq. 15). 

Now we proceed to the case when high-permeability medium has the form of a straight cylinder.  

1) When utdDt <<ln1  the influence of advection can neglected. 

At times  the fast classical one-dimensional diffusion occurs 1tt <<

( ) ( )
2

1 24
4

/ xG x,t Dt exp
Dt

π − ⎛ ⎞
= ⎜

⎝ ⎠
− ⎟ , (Eq. 19) 

where x  is the coordinate along the cylinder axis. 

In the time interval , where 21
~ttt <<<< 2 1 lnD Dt t

d d
=% , logarithmic subdiffusion takes place  

( ) ( ) ( ) ( )
1

1 1 1

1, 1 expt x xG x t
t R t R t R tπ

⎛ ⎞ ⎛ ⎞
⎟⎟
⎠

′ ≈ + −⎜ ⎟ ⎜⎜ ⎟ ⎜
⎝ ⎠ ⎝

, ( ) 111 ln ttDttR = . (Eq. 20) 

At 2
~tt >>  slow subdiffusion occurs (1.7), where one has to put x  instead of ρ . 

2) If dDttt u ln11 <<<< , then the sequence of regimes is described by (Eq. 19) and (Eq. 20) and 

after that in the interval 1 2ln ut D d t t<< << , where 
d

D
d

D
tt uu

u
2

12 ln= , the second logarithmic 

subdiffusive regime occurs: 

( ) ( ) ( ) ( )
1

2 2 2

1, exp
⎞

− ⎟⎟
⎠

uut xt xG x t
t R t R t R t

⎛ ⎞ ⎛+′ ≈ ⎜ ⎟ ⎜⎜ ⎟ ⎜π ⎝ ⎠ ⎝
, ( )2 1 ln 1R t ut t t= % % . (Eq. 21) 

Ultimately, at , slow classical diffusion utt 2>> (Eq. 15) takes place. 

3) For  the sequence of regimes is as follows. Up to the time  fast classical one-
dimensional diffusion 

1ttu < ut2

(Eq. 12) and then one-dimensional advection-diffusion 

( ) ( ) ( )2
1 24

4
/ x ut

G x,t Dt exp
Dt

− ⎧ ⎫−⎪≅ −⎨
⎪ ⎪⎩ ⎭

π ⎪
⎬ , (Eq. 22) 
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with the correction in the left wing (in the train) 

( ) 2 3
1

2 1
4
u

b
ut xG x,t

u t t
δ

π

+
≅

′
 (Eq. 23) 

Then the regime of the quasi-diffusion  

( )
22 1

44
u

uu

x ut xG x,t exp ,
ut D tD tπ

⎛ ⎞+′ = ⎜′ ′ ⎝ ⎠
− ⎟′

 (Eq. 24) 

and then logarithmic diffusion (Eq. 20) occurs. After that the slow classical diffusion (Eq. 15) is 
observed. 

At times  the number of active particles decreases with time as 1tt >>

( )
t
tNtN 1

0~  (Eq. 25) 

Note that in the case of the straight cylinder the slow classical diffusion (Eq. 15) is the final 
transport regime independent of the relation between 1

~t  and .  ut

CONTAMINANT TRANSPORT OVER PERCOLATION MEDIA WITH CLASSICAL 
DIFFUSION AS PHYSICAL MECHANISM 

Basing on the considerations of the second section, the equation for the concentration of active 
particles averaged over an ensemble of realizations of the medium can be written as 

( ) ( ) ( ) ( ),
,

tс r t
dt t t с r t D с r t

t
ϕ

−∞

∂
′ ′ ′+ − = Δ

∂ ∫
r

r , ,r  (Eq. 26) 

where  is the bare diffusivity. The kernel D ( )t tϕ ′−  has the properties 

( ) ( )12~ / 0 1a a at t t t with at t t tα ,ξϕ α+− < < << <<  (Eq. 27) 

( ) 2~ 1/ at tϕ  at , and at t≤ ( )tϕ  decays exponentially at t tξ> . Characteristic times  and at tξ  are 
determined by the relations 

( )
2

2~ / , ~at a D t t aa
α

ξ ξ  (Eq. 28) 

As before,  is the lower truncation size and a ξ  the correlation length. 

In this model, transport regimes and concentration asymptotics for the medium state above the 
percolation threshold consist in the following (Ref. [7]). 

In the interval at t tξ<< << , the transport goes in the sub-diffusive regime with the contaminant 
plume size given by the relation 

( ) ( ) / 2~ / aR t a t t α . (Eq. 29) 
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The total number of active particles (residing in the back-bone of the percolation cluster) decays 
with time as 

( ) ( )( )1~ 0 /aN t N t t α− . (Eq. 30) 

In this regime, the asymptotic behavior of the concentration at large distances is determined by 

( ) ( )( )2/ 2, expс r t B αη −∝ −
r    ( )/r R tη =       ~ 1B . (Eq. 31) 

Note that the concentration decay in the sub-diffusion regime is slower than the Gaussian one in 
classical diffusion. 

At times t tξ>>  the active particle concentration obeys the classical diffusion equation with 

renormalized diffusivity : D%

( ) ( ) (3/ 2 2, 4 exp / 4с r t N Dt r Dtπ
−

∞≅ −
r % )% . (Eq. 32) 

The expression (Eq. 32) is valid at the distances 24 /r Dt tξ< % . If 24 /r Dt tξ> % , then the 
classical Gaussian tail described by (Eq. 32) changes with the sub-diffusive tail (Eq. 31). So the 
concentration asymptotics at t tξ>>  has the multistage structure. 

The total number of active particles at these times remains constant, ( )N t N∞≅ . The 
renormalization factors for the diffusion coefficient and the total number of active particles are 
equal: 

( ) ( ) ( )2 1 // / 0 , ~ /D D N N F F a .α αξ −
∞= =%  (Eq. 33) 

RENORMALIZATION OF CONTAMINANT SOURCE POWER DUE TO 
FLUCTUATION EFFECTS 

If the contaminant source surface area  is comparable to the square of the lower truncation size 
( ), the strong fluctuations of the medium properties renormalize the source power [10]. 
The renormalization factor 

S
2~S a

K  is determined by the rare combinations of favorable conditions – 
“leakage path“ (punctures). This situation resembles the problem of the tunneling barrier in 
semiconductors explored in [11], and so we take advantage of the approach of this work. Like 
[11], the distribution of the puncture concentrations per unit area of the source boundary can be 
expressed as 

( ) ( ) ( )[ uexpSu Ωρ −= −1
0 ] (Eq. 34) 

where  is the characteristic cross-sectional size of the puncture, which is small compared to the 
average distance between punctures, u  is an auxiliary variable running the values from  to 

0S
0 +∞ , 

and ( )uΩ  is a function having the properties ( ) 1>>Ω u , 0<∂Ω∂ u , 022 >∂Ω∂ u . 

The analysis [5, 10] using an averaging procedure over the puncture concentration distribution 
leads to the following results. For large source sizes, , the renormalizing factor is close to 
unity. At small source sizes, the renormalizing factor rapidly decreases with  

2S a>
S
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( )[ ]optf uuexpK −−∝     at     (Eq. 35) 2S a<<

where the quantities  and optu fu  are determined by the equations ( )( ) 01 =+∂Ω∂ = optuuuu  and 

. Note that we have ( )0/ exp fS S u⎡ ⎤−Ω⎣ ⎦( ) =1 1K <<  at 2S a<< . 

One additional effect caused by the fluctuations concerns the statistical scatter of the 
renormalization factor K . The relative scatter ( ) ( ) ><>><−≡< K/KKK 2Δ  is small at large 
source sizes and becomes large at small source sizes. 

COMPARISON WITH EXPERIMENT 

Non-classical tailing of tracer breakthrough is often observed in pulse injection tracer tests 
conducted in fractured geologic media. Note that here tailing means long time behavior of the 
concentration distribution. Usually, researchers associate the non-classical tailing with a diffusive 
exchange of tracer between mobile fluids traveling through channels in fractures and relatively 
stagnant fluid between fluid channels, along fracture walls, or within the bulk matrix. However, 
one series of field tracer tests resulted in breakthrough curves exhibiting strong tailing that could 
not be explained by diffusive mass exchange [12]. These tests were conducted in a fractured 
crystalline rock using both a convergent and a weak dipole injection and pumping scheme. 
Deuterated water, bromide, and pentafluorobenzoic acid were selected as tracers for their wide 
range in molecular diffusivity. The long time behavior of the normalized breakthrough curves 
was consistent for all tracers, even when the pumping rate was changed. Hence it follows that the 
diffusive exchange is not significant in these experiments. So it is reasonable to interpret these 
tracer results in terms of the random advection model presented in this paper. Taking into account 
(Eq. 4) and (Eq. 5), we found the interpolation formula described correctly right and left wings of 
the breakthrough curve: 

( )
3 1

10 0

0

exp
h hС t t tB

C t t
+

⎧ ⎫
⎪ ⎪⎛ ⎞ ⎛ ⎞= −⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 (Eq. 36) 

where  and h B  are fitting parameters. 
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Fig. 4. Theoretical breakthrough curve and experimental data. 
 
The comparison of the prediction given by (Eq. 36) and tracer tests [12] shown in Fig. 4 results in 

. Thus super-diffusion behavior is observed. We conclude that agreement between the 
theory and experiment is quite satisfactory. 

0.4h ≅

CONCLUSIONS 
The main results presented in this paper may be summarized as follows. 

Four principal structural peculiarities, which may lead to the non-classical radionuclide transport 
regimes in fractured geological media, are singled out. These are fractal geometry of fractures, 
advection flows as a dominating transport physical mechanism, sharp contrast in properties 
distribution, and spatial fluctuations of the medium characteristics. 

Super-diffusion behavior of the contaminant concentration is observed in the model of random 
advection with slow enough decay of the infiltration flux correlations under the condition of the 
infinite correlation length. In case of finite correlation length contaminant transport goes in the 
super-diffusion regime at early times and in a classical diffusion at late times. 

Depending on time interval, a series of transient transport regimes (among them, sub-diffusion 
and quasi-diffusion) are revealed in the case of diffusion-advection as transport physical 
mechanism in regularly heterogeneous contrast media. If the medium contrast is rather sharp, 
intermediate sub-diffusion or quasi-diffusion may act as a regime which is asymptotic in time. 

For diffusion in a percolation dominant medium, being above the percolation threshold, 
contaminant transport occurs in a sub-diffusion mode at an earlier time and in classical diffusion 
at later times. In all the models in question, the contaminant concentration decrease at large 
distances (“in tails”) is of exponential type. It occurs faster in super-diffusion regime and slower 
in sub-diffusion as compared to the classical (Gaussian) law. None of physical models proves the 
existence of heavy tails (concentration decay due to power law) peculiar to formal mathematical 
models of fractional diffusion. The change of transport regimes in time cause the multistage 
structure of the concentration tails. The current regime determines the stage which is the closest 
to the contaminant source. Further stages reproduce earlier transport modes in the inverse time 
order. 
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Spatial fluctuations of the medium structural properties can lead to the significant 
renormalization of the contaminant source power. For small source sizes, the renormalizing 
factor rapidly decreases with contaminant source surface area. One additional effect caused by 
the fluctuations concerns the statistical scatter of the renormalization factor. It becomes large at 
small source surface areas. 

The results of this study may be used in developing computer codes to assess the reliability of 
radioactive waste disposals. 
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